Ein Beitrag zu hochschmelzenden Systemen

Aufbau des Dreistoffs: Uran-Zirkonium-Bor und Messungen des Ausdehnungskoeffizienten von Mo₃(Al,Si), MoAlSi, Mo(Al,Si)₂ und TaB₂

Von

H. Holleck, F. Benesovsky, E. Laube und H. Nowotny

Aus dem Metallwerk Plansee, AG. Reutte/Tirol und dem Institut für Physikalische Chemie der Universität Wien

Mit 2 Abbildungen

(Eingegangen am 11. Juli 1962)

Der Dreistoff: U—Zr—B wird durch röntgenographische Untersuchungen in seinem Aufbau studiert. Es besteht keine ternäre Verbindung, doch bilden UB_{12} und ZrB_{12} eine lückenlose Mischreihe. UB_2 löst etwa 10 Mol% ZrB_2 . Die thermischen Ausdehnungskoeffizienten von TaB₂, MoAlSi, Mo(Al, Si)₂ und Mo₃(Al, Si) werden durch Messung der Gitterparameter ermittelt.

Mit Rücksicht auf die in der Reaktortechnik interessante Kombination: Uran—Zirkonium wurde auch der Dreistoff mit Bor eingehend untersucht¹. Die Herstellung der Proben erfolgte in bekannter Weise durch Sintern von Pulvergemischen sowie durch Lichtbogenschmelzen. Die Homogenisierungstemperatur lag bei 1700—1800° C (17—20 Stdn.) für das Gebiet zwischen Bor und den Diboriden. Legierungen im Bereich von 33—100% Metall wurden einige Stdn. bei 900—1100° C geglüht.

Der Dreistoff: U-Zr-B

Der Aufbau der Randsysteme: Uran-Bor sowie Zirkonium-Bor ist erst durch Arbeiten aus der jüngsten Zeit gesichert. Ein vorläufiges Zustandsdiagramm: U-B wurde von B. W. Howlett² angegeben, doch

¹ Vgl. den Dreistoff: U—Zr—C, F. Benesovsky und E. Rudy, Planseeber. Pulvermetallurgie 9, 65 (1961).

² B. W. Howlett, J. Inst. Met. 88, 91, 467 (1959/60).

bestand über die Existenz der Phasen UB12, UB4 und UB2 sowie deren Struktur keinerlei Zweifel mehr. Diese Phasen wurden auch in einer früheren Arbeit diesbezüglich bestätigt³. Im System: Zr-B gibt es nach einer erneuten ausführlichen Untersuchung lediglich die Phasen ZrB₁₂ und ZrB₂⁴. Während ZrB₂ über den gesamten Temperaturbereich stabil ist, erweist sich ZrB₁₂ nach den Untersuchungen von F. W. Glaser und B. Post⁵ als Hochtemperaturphase. In einer kürzlich erschienenen Arbeit äußern J. M. Leitnaker, M. G. Bowman und P. W. Gilles⁶ die Ansicht, daß ZrB₂ ein schmales, homogenes Gebiet außerhalb der stöchiometrischen Zusammensetzung besitzt (ZrB_{1.90-1.97}), fügen

aber hinzu, daß dies wahrscheinlich, aber noch nicht völlig gesichert sei. Vom Paar: U-Zr ist die lückenlose Mischbarkeit zwischen den raumzentrierten y-Uran und β-Zirkonium bekannt⁷.

Das Dreistoff-System: U-Zr-B ist durch das Fehlen einer ternären Phase gekennzeichnet, doch bilden die isotypen Kristallarten UB₁₂ und ZrB₁₂ auf Grund einer röntgenographischen Untersuchung eine kontinuier-

liche Mischreihe. Dies geht auch klar aus dem Befund an geschmolzenen Proben hervor, die sich auf diesem Schnitt als praktisch homogen erwiesen. Bemerkenswert ist, wie Abb. 1 erkennen läßt, der von der Additivität stark abweichende Gang des Gitterparameters, der sicher nicht auf Konzentrationsverschiebungen zurückgeführt werden kann. Möglicherweise hängt dies mit einem veränderlichen Metallgehalt zusammen, etwa derart, daß manche Bor-Polyeder leer sind (Metallunterschuß). Insbesondere läßt der starke Anstieg des Gitterparameters bei geringen Gehalten von UB₁₂ einen Zirkonium-Defekt vermuten. Eine andere Deutung läge in der Annahme, daß die kritische Entmischungstemperatur nahe der hier angewendeten Homogenisierungstemperatur liegt. UB4 zeigt wenig Neigung für die Aufnahme

³ L. Toth, H. Nowotny, F. Benesovsky und E. Rudy, Mh. Chem. 92, 794 (1961).

⁴ H. Nowotny, E. Rudy und F. Benesovsky, Mh. Chem. 91, 963 (1960); 92, 393 (1961).

⁵ F. W. Glaser und B. Post, Trans. Amer. Inst. Metall. Engrs. 197, 1117 (1953).

⁶ J. M. Leitnaker, M. G. Bowman und P. W. Gilles, J. Chem. Phys. 16, 350 (1962).

⁷ D. Summer-Smith, J. Inst. Met. 83, 277 (1955).

von Zirkonium-Boriden; ferner ist die Feststellung interessant, daß selbst bei Proben des Schnittes: UB_2 —Zr B_2 , die 10 Stdn. bei 2000° C homogenisiert wurden, eine sehr weite Mischungslücke auftritt. Während UB_2 etwa 10—15 Mol% Zr B_2 löst, konnte umgekehrt keinerlei Mischphasenbildung beobachtet werden. Die Ursache für die Mischungslücke

Abb. 2. Probenlage und Schnitt im Dreistoff: Uran-Zirkonium-Bor bei 1800° C

zwischen den isotypen Phasen liegt zweifellos in dem merklich verschiedenen c/a-Verhältnis (1,27 für UB₂ und 1,12 für ZrB₂), obwohl sich die Parameter in der Mischphase (U, Zr)B₂ in Richtung auf einen kleineren c/a-Wert ändern.

Die Gleichgewichte gehen aus Abb. 2 hervor. Neben den Dreiphasenfeldern: $\operatorname{ZrB}_2 + \operatorname{UB}_4 + (\operatorname{U}_{0,7}\operatorname{Zr}_{0,3})\operatorname{B}_{12}, \operatorname{ZrB}_2 + \operatorname{UB}_4 + (\operatorname{U}_{0,85}\operatorname{Zr}_{0,15})\operatorname{B}_2$ hat man bei Temperaturen oberhalb 1000° C noch ein solches: $\operatorname{ZrB}_2 + (\operatorname{U}_{0,85}\operatorname{Zr}_{0,15})\operatorname{B}_2 + \beta \operatorname{-Zr}_{\gamma}\operatorname{-U-Mischkristall}$ anzunehmen. Allerdings läßt sich die metallische Mischphase durch einfaches Abschrecken nicht stabilisieren. Eine thermodynamische Berechnung zeigt, daß bei $2130^{\circ}\,\mathrm{K}$ die Diboride mit praktisch reinem Uran im Gleichgewicht stehen*.

Das System: U-Zr-B hat demnach große Ähnlichkeit mit dem früher untersuchten Dreistoff: Th-U-B⁸.

Messungen des thermischen Ausdehnungskoeffizienten an TaB₂, Mo₃(Al, Si) und Mo(Al, Si)₂

Erst seit kurzem wird derartigen Messungen an hochschmelzenden Verbindungen mehr Aufmerksamkeit geschenkt, weil der thermische Ausdehnungskoeffizient im Zusammenhang mit dem Zunderproblem bei Schutzschichten von zunehmender Bedeutung wird. Wegen der durch Aluminium-Zusätze verbesserten Oxydationsbeständigkeit von Molybdän-Siliciden schien es vor allem von Interesse zu sein, Mo—Al—Si-Phasen diesbezüglich zu prüfen. Die Messungen wurden, wie früher beschrieben⁸, mit einer umgebauten Unicam-Hochtemperaturkamera durchgeführt. Für Mo₃(Al, Si), MoAlSi (TaSi₂-Typ), Mo(Al, Si)₂ (MoSi₂-Typ) und TaB₂ wurden die in Tab. 1 angeführten Gitterparameter gemessen und daraus die linearen Ausdehnungskoeffizienten ermittelt (Tab. 2). Die Mo—Al—Si-Proben waren nicht völlig homogen, wohl aber jene von TaB₂. TaB₂ hat

	${ m Mo_{3}Al_{0,77}Si_{0,23}}\ ({ m Cr_{3}O}-{ m Typ})$				${f MoAlSi} \ ({f TaSi_2} ext{-}{f Typ})$			
°C	a	,		°C	a	с	c/a	
10	$4,92_{3}$			10	4,709	$6,55_{6}$	$1,39_{2}$	
350	4.93_{3}			600	$4,72_{9}$	$6,59_{0}$	$1,39_{4}$	
600	4.94_{2}			760	$4,73_{7}$	$6,60_{9}$	$1,39_{5}$	
740	4,947			800	$4,74_{2}$	$6,61_{2}$	$1,39_{5}$	
840	$4,95_{2}$							
	Mo (A (MoSi	1, Si)2 2-Typ)			Т	$^{\rm aB_2}$		
°C	a	с	c/a	°C	a	с	c/a	
10	3,199	7.847	$2,45_{5}$	10	3,084	3,226	1,046	
540	3,210	7,885	$2,45_{7}$	500	3,095	3,239	1,046	
690	3,220	$7,90_{2}$	$2,45_{5}$	580	3,096	3,240	1,046	
	,			740	3,100	3,246	1,048	
				870	3,116	3,258	1,046	

Tabelle	1.	Gitterkonstanten	von Mo ₃ A	l _{0,77} Si _{0,23} ;	$Mo(Al, Si)_2$	und
		TaB_2 bei ver	schiedenen	Tempera	turen	

* A. Neckel, unveröffentlicht.

⁸ L. E. Toth, H. Nowotny, F. Benesovsky und E. Rudy, Mh. Chem. 92, 945 (1961).

⁹ H. Nowotny und E. Laube, Planseeber. Pulvermetallurgie 9, 54 (1961).

einen relativ weiten homogenen Bereich. Die hier gemessene Probe weist entsprechend den Gitterparametern einen Bor-Unterschuß auf. Indessen war die Hauptmenge bei den Molybdän-Aluminiumsiliciden die Phase mit Cr₃O-Typ im ersten Falle und jene mit TaSi₂- sowie MoSi₂-Typ im zweiten.

```
Tabelle 2. Thermische Ausdehnungskoeffizienten (lineare und
mittlere) einiger hochschmelzender Phasen (von 20°C bis zur an-
gegebenen Temperatur)
```

${\rm TaSi}_2,\ldots,$	TaSi ₂ -Typ	$\begin{array}{rcl} \ \alpha_{a} \cdot 10^{6} = & 8,9 \ (950^{\circ} \mathrm{C}) \\ \ \alpha_{c} \cdot 10^{6} = & 8,8 \ (950^{\circ} \mathrm{C}) \\ \end{array} \\ \hline \end{array} \\ \left. \vec{\alpha}_{c} \cdot 10^{6} = & 8,8 \ (950^{\circ} \mathrm{C}) \\ \end{array} \right ^{-1} \\ \left. \vec{\alpha}_{c} \cdot 10^{6} = & 8,8 \ (950^{\circ} \mathrm{C}) \\ \hline \end{array} \\ \left. \vec{\alpha}_{c} \cdot 10^{6} = & 8,8 \ (950^{\circ} \mathrm{C}) \\ \hline \end{array} \\ \left. \vec{\alpha}_{c} \cdot 10^{6} = & 8,8 \ (950^{\circ} \mathrm{C}) \\ \hline \end{array} \\ \left. \vec{\alpha}_{c} \cdot 10^{6} = & 8,8 \ (950^{\circ} \mathrm{C}) \\ \hline \end{array} \right ^{-1} \\ \left. \vec{\alpha}_{c} \cdot 10^{6} = & 8,8 \ (950^{\circ} \mathrm{C}) \\ \hline $
MoAlSi	TaSi ₂ -Typ	$ \begin{array}{ll} \alpha_{a} \cdot 10^{6} = & 8,9 \; (800^{\circ} \mathrm{C}) \\ \alpha_{c} \cdot 10^{6} = & 10,8 \; (800^{\circ} \mathrm{C}) \end{array} $
$Mo(Al, Si)_2$.	MoSi ₂ -Typ	$ \begin{pmatrix} \alpha_a \cdot 10^6 = 9, 6 \ (690^{\circ} \text{ C}) \\ \alpha_c \cdot 10^6 = 10, 3 \ (690^{\circ} \text{ C}) \\ \end{pmatrix} $
$MoSi_2 \dots$	MoSi ₂ -Typ	$\overline{\alpha} \cdot 10^6 = 7.9 \ (-950^{\circ} \mathrm{C})^{10}$
Mo ₃ (Al, Si)	Cr ₃ O-Typ	$\alpha \cdot 10^6 = 7,1 (-840^{\circ} \text{ C})$
$TaB_2 \dots$	AlB ₂ -Typ	$\begin{cases} \alpha_a \cdot 10^6 = 11.6 \ (870^{\circ} \text{ C}) \\ \alpha_e \cdot 10^6 = 11.4 \ (870^{\circ} \text{ C}) \end{cases}$

Der mittlere lineare Ausdehnungskoeffizient von MoAlSi ist etwas größer als jener des isotypen TaSi⁹, was in erster Näherung mit der Schmelzpunktsrelation erklärt werden kann. Die offensichtlich stärkere Ausdehnung in der c-Achse bei MoAlSi gegenüber TaSi₂ hängt zweifellos mit der Tatsache zusammen, daß MoAlSi weniger pseudokubisch als TaSi₂ ist. Auffallend ist auch der etwas höhere mittlere Ausdehnungskoeffizient von Mo(Si, Al)₂ mit MoSi₂-Typ gegenüber MoAlSi mit TaSi₂-Typ. Mittlere Ausdehnungskoeffizienten (bis 1500° C) an TaSi₂, MoSi₂ und WSi2 wurden dilatometrisch von J. Booker, R. M. Paine und A. J. Stonehouse¹⁰ bestimmt (siehe Tab. 2). Die Übereinstimmung mit dem von uns früher ermittelten Wert von α_{TaSi} , ist gut, obwohl häufig die dilatometrisch gemessenen thermischen Ausdehnungskoeffizienten etwas höher als die aus Gitterparameter bestimmten sind. Dagegen liegt merkwürdigerweise der von diesen Autoren für MoSi₂ ermittelte Wert $\bar{\alpha}_{MoSi_2}$ (bis 950°C) unter jenem von TaSi₂. Entsprechend dem höheren Anteil an Übergangsmetall ist der thermische Ausdehnungskoeffizient von Mo₃(Al, Si) trotz des großen Verhältnisses Al/Si kleiner als jener der Disilicide.

Relativ groß erweist sich der Ausdehnungskoeffizient von TaB₂, der mit dem für CrB₂ angegebenen Wert vergleichbar ist¹¹. Allerdings sind die Messungen an TaB₂ nicht besonders zuverlässig, obwohl die allgemeine, theoretisch zu erwartende Tendenz einer Zunahme von α mit der Temperatur auch hier eindeutig festgestellt wird.

¹⁰ J. Booker, R. M. Paine und A. J. Stonehouse, TR 60-889, (1961).

¹¹ V. S. Neschpor und G. V. Samsonov, Fiz. Metallov Metalloved 4, 181 1957).